Depth from Brightness of Moving Images

نویسندگان

  • Stefano Soatto
  • Pietro Perona
چکیده

In this note we describe a method for recursively estimating the depth of a scene from a sequence of images. The input to the estimator are brightness values at a number of locations of a grid in a video image, and the output is the relative (scaled) depth corresponding to each image-point. The estimator is invariant with respect to the motion of the viewer, in the sense that the motion parameters are not part of the state of the estimator and therefore the estimates do not depend on motion as long as there is enough parallax (the translational velocity is nonzero). This scheme is a "direct" version of an other algorithm previously presented by the authors for estimating depth from point-feature correspondence independent of motion. Consider a sequence of images, consisting of a map from some location on a pixel grid x and a particular time instant t onto a brightness value in IR+. In practice the brightness values are quantized, and we will lump the effects of the quantization errors and other sensor noises into an additive Gaussian noise component, so that we measure I(x, t ) + ~ I ( x , t ) n~ E N(O, a) . (2) As the camera moves relative to the scene, the brightness patches on the image plane move accordingly. Under somewhat restrictive circumstances, we can assume that the brightness of each point in the scene remains unchanged. This assumption can be violated in a number *Research sponsored by NSF ERC in Neuromorphic Systems Engineering at Caltech, ONR grant N0001493-1-0990. This work is registered as CDS technical report n. CIT-CDS 95-008, March 1995.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative brightness due to temperature changes with ultrasound image analysis during Radiofrequency ablation

Introduction: Diagnosis of primary and secondary cancers to treat patients with diffuse and malignant tumors is an important subject. The appropriate treatment will be eliminating primary and metastatic tumors. Radiofrequency ablation with localized heat induction in the target tissue causes irreversible cellular damage and tissue coagulation. Estimation of tissue temperature c...

متن کامل

Articulated - pose estimation using brightness - and depth - constancy constraints

This paper explores several approaches for articulated-pose estimation, assuming that video-rate depth information is available, from either stereo cameras or other sensors. We use these depth measurements in the traditional linear brightness constraint equation, as well as in a depth constraint equation. To capture the joint constraints, we combine the brightness and depth constraints with twi...

متن کامل

Articulated-Pose Estimation Using Brightness and Depth-Constancy Constraints

This paper explores several approaches for articulated-pose estimation, assuming that video-rate depth information is available, from either stereo cameras or other sensors. We use these depth measurements in the traditional linear brightness constraint equation, as well as in a depth constraint equation. To capture the joint constraints, we combine the brightness and depth constraints with twi...

متن کامل

An Investigation of Brightness Changes in Ultrasound Images due to Temperature Variations in Liver Tissue during Radiofrequency Ablation

Introduction: one of the minimally invasive methods of treatmenting liver malignancies is Radiofrequency Ablation (RFA) which can be applied to primary or secondary tumors. Nevertheless, the disease recurrence is probable after RFA application partially due to the inadequate capability of temperature monitoring of the target tissue and visualizing the thermal damage. The goal of this work was t...

متن کامل

Classification of hydrometeors using microwave brightness temperature data from AMSU-B over Iran

The Advanced Microwave Sounding Unit-B (AMSU-B) installed on the NOAA-15, 16, and 17 satellites, is the new generation of a series of microwave imagers/sounders that can sense atmospheric moisture and other hydrometeors through clouds. This paper demonstrates the potential of multi-frequency AMSU-B data for classifying different types of hydrometeors. Ten types of these hydrometers have been co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995